Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Food Measurement and Characterization ; 2021.
Article in English | PMC | ID: covidwho-1338054

ABSTRACT

Fruits have been widely consumed since the beginning of human evolution and are important source of a healthy being and helpful in treating various diseases as immunity boosters with the presence of a rich amount of health-promoting bioactives. Therapeutic efficacies of fruit extracts are reported to have immune-modulatory properties and influence greatly on the immune system of human body. Given the facts of the efficacy of edible fruits in improving the immunity of body as immune-stimulants, we have tried to consolidate the previously published data on edible fruits and its juices with antiviral potential. The objective of this review was to gather information on edible fruits with antiviral properties and the efforts to obtain their efficient delivery. Online bibliographical databases like PubMed, Scopus, and Web of Science were used to search literature on the antiviral effect of edible fruit extracts and fruit juices. The edible fruits like almond, apple, bael, blackberry, black currants, crane berry, citrus, grapes, Japanese cherry, mango, mulberry, pistachios, pomegranate, and strawberry showed promising antiviral properties against the different pathogenic viruses. The review provided an overview of likely effects of the intake of edible fruit extracts/fruit juices to strengthen the immune cells by reducing the oxidative stress in host body system which in turn inhibits the viral attachment and replication on the host cell. Hence these fruits can also be exploited in combating COVID-19 in the current pandemic situation. To validate the present hypothesis, the proposed edible fruit extracts can be evaluated against the SARS-CoV-2 via in vitro and in vivo models to confirm the fact.

2.
J Food Biochem ; : e13851, 2021 Jul 08.
Article in English | MEDLINE | ID: covidwho-1301514

ABSTRACT

Plant-derived bioactive molecules display potential antiviral activity against various viral targets including mode of viral entry and its replication in host cells. Considering the challenges and search for antiviral agents, this review provides substantiated data on chemical constituents of edible fruits with promising antiviral activity. The bioactive constituents like naringenin, mangiferin, α-mangostin, geraniin, punicalagin, and lectins of edible fruits exhibit antiviral effect by inhibiting viral replication against IFV, DENV, polio, CHIKV, Zika, HIV, HSV, HBV, HCV, and SARS-CoV. The significance of edible fruit phytochemicals to block the virulence of various deadly viruses through their inhibitory action against the entry and replication of viral genetic makeup and proteins are discussed. In view of the antiviral property of active constituents of edible fruits which can strengthen the immune system and reduce oxidative stress, they are suggested to be diet supplements to combat various viral diseases including COVID-19. PRACTICAL APPLICATIONS: Considering the increasing threat of COVID-19, it is suggested to examine the therapeutic efficacy of existing antiviral molecules of edible fruits which may provide prophylactic and adjuvant therapy with their potential antioxidant, anti-inflammatory, and immune-modulatory effects. Several active molecules like geraniin, naringenin, (2R,4R)-1,2,4-trihydroxyheptadec-16-one, betacyanins, mangiferin, punicalagin, isomangiferin, procyanidin B2, quercetin, marmelide, jacalin lectin, banana lectin, and α-mangostin isolated from various edible fruits have showed promising antiviral properties against different pathogenic viruses. Especially flavonoid compounds extracted from edible fruits possess potential antiviral activity against a wide array of viruses like HIV-1, HSV-1 and 2, HCV, INF, dengue, yellow fever, NSV, and Zika virus infection. Hence taking such fruits or edible fruits and their constituents/compounds as dietary supplements could deliver adequate plasma levels in the body to optimize the cell and tissue levels and could lead to possible benefits for the preventive measures for this pandemic COVID-19 situation.

SELECTION OF CITATIONS
SEARCH DETAIL